

UCSF Health

Advances in Gynecologic Cancers:

Hereditary Factors and Biomarker Testing

Julie S. Mak, MS, MSc, CGC (she/her) Genetic Counselor UCSF Monique Tiffany, MSN, RN, CGRA, BHCN (she/her) Medical Science Liaison Myriad Genetics 10/4/2024

Outline

- Germline (inherited) and somatic (tumor) genetic changes
- Hereditary Cancer
 - Genes associated hereditary gynecologic cancer
 - Impact on associated cancer risks
- Targeted Treatment Approaches
 - Current and new biomarkers associated with targeted therapies

Germline and Somatic Genetic Changes

All cancer is the result of genetic mutations

With sporadic cancers, many mutations build up in cells over time, eventually leading to cancer.

With hereditary cancers, the first mutation is inherited and already present at birth. Additional mutations build up over time, leading to cancer.

UCSF Health

Germline (hereditary) testing vs Somatic (tumor) testing

	Germline Testing	Tumor Testing	
Sample	Healthy cells, usually saliva or blood	Tumor cells from biopsy or surgery * Dr. Chapman presented on circulating tumor DNA	
Purpose	Learn cause of cancer and risk of future cancers for patient and family	Learn what makes the tumor grow and what treatments might work best	
Often ordered by	Genetic Counselor or others	Oncologist	

Hereditary Cancer Predisposition - Due to Germline Genetic Changes

Hereditary Cancer is (not so) rare

Sporadic (average risk)
Familial (moderate risk)
Hereditary (high risk)

Ovarian cancer – 20%
Endometrial (uterine) cancer – 5%
Uterine sarcoma – unknown
Cervical cancer – minimal inherited factors

Somatic vs Germline Mutations

With hereditary cancers, the first mutation is

inherited and already present at birth. Additional

mutations build up over time, leading to cancer.

With sporadic cancers, many mutations build up in cells over time, eventually leading to cancer.

Normal cell First mutation First mutation Second mutation Second mutation Third mutation Third mutation Fourth + mutation Fourth + mutation Cancer cell Cancer cell Adapted from "Understanding Gene Testing" - NIH 1995 Adapted from "Understanding Gene Testing" - NIH 1995

Inherited mutations cause:

- •Early age at onset
- •Multiple primaries
- Incomplete penetrance
- •Dominant inheritance

Inheritance of Hereditary Cancer

http://www.in.gov/isdh/24477.htm

Several Genes can Contribute to Hereditary Ovarian Cancer Risk

Proportions of patients with primary ovarian, fallopian tube, or peritoneal cancers with germline loss-of-function pathogenic variants

Patients may need to be re-tested

Germline Genetic Testing - Results

Types of Variants			
Pathogenic	Disease-causing "mutation"		
Likely pathogenic	Usually treated clinically like pathogenic		
Uncertain/ Unknown Significance	Encompasses large range – most will be benign, but some are suspicious		
Likely benign	Treated clinically like benign, not reported		
Benign	Not reported		

Understanding Positive Results

- Is not a diagnosis of cancer!
- Increased chance of developing some cancers
 - Opportunity for early detection and prevention
- <u>Genes vary</u> in cancer risks and recommendations
- NCCN provides guidelines for management of many positive results

Variants of Uncertain Significance (VUS)

If I had a nickel for every time...

- VUS are common with large multi-gene panels
 - (20-50%, depending on panel and population)
- VUS
 - Most turn out to be normal
 - Like negative result, we don't change screening or recommend testing relatives
 - "Normal until proven otherwise" Nicola
 - There are many genetic differences between people, and most are normal. We do not understand all of the differences yet. When we see something rare, it is usually a normal variant, but can take time to figure out if it is normal or linked to cancer risk

Targeted Treatment Approaches - Based on Somatic Genetic Changes

Targeted Treatment Approaches What are Biomarkers

Each person's cancer has a unique pattern.

Certain proteins, DNA/RNA changes give us information about the aggressive nature, likelihood of response and overall prognosis for a patient.

This information helps to guide treatment decisions.

Questions that can be answered by cancer biomarkers

Biomarkers in Endometrial Cancer

- MMR (Mismatch Repair) Proteins: Deficiencies in MMR proteins (e.g., MLH1, MSH2, MSH6, PMS2) are associated with Lynch syndrome and can influence treatment decisions, particularly the use of immunotherapy.
- POLE (Polymerase Epsilon): Mutations in the POLE gene are linked to a specific subtype of endometrial cancer with a favorable prognosis and may impact treatment strategies (de-escalate chemotherapy).
- TP53: Mutations in TP53 are often found in more aggressive forms of endometrial cancer and can guide the use of targeted therapies.
- HER2/neu: Overexpression or amplification of HER2 can be targeted with specific therapies like trastuzumab (Herceptin). Gene alterations in ERBB2 may also be considerations for targeted therapies.
- NTRK Gene Fusions: These fusions can be targeted with TRK inhibitors, which are effective in tumors harboring these alterations. (Larotrectinib/Entrectinib)
- Tumor Mutation Burden (TMB): High TMB can predict responsiveness to immunotherapy.

Emerging Biomarkers (clinical trials)

 JAG2, AURKA, PGK1, HRPT1: These genes are being studied for their potential roles as diagnostic, prognostic, or treatment biomarkers.

Endomet	ria
POLE	
MLH1	
MSH2	
PMS2	
MSH6	
TP53	
ERBB2	

Biomarkers in Ovarian Cancer

- BRCA1/BRCA2: Mutations (germline/tumor) in these genes can indicate a higher likelihood of response to PARP inhibitors, which are effective in treating ovarian cancer. (Lynparza/Olaparib)
- HRD (Homologous Recombination Deficiency): This includes BRCA mutations and other gene alterations that impair DNA repair (genomic instability), making tumors more susceptible to PARP inhibitors (increase response).
- TP53: Mutations in TP53 are common in high-grade serous ovarian cancers and can influence treatment strategies. (platinum-based)
- PIK3CA: Mutations in this gene can be targeted with PI3K inhibitors. (Alpelisib)
- Folate Receptor Alpha (Frα): Platinum resistant cancer to determine targeted therapeutics (mirvetuximab soravtansine)
- FOXL2: prognostic
- MSI (Microsatellite Instability): High MSI can predict responsiveness to immunotherapy. (Bevacizumab)
- NTRK Gene Fusions: These fusions can be targeted with TRK inhibitors, which are effective in tumors harboring these alterations. (Larotrectinib/Entrectinib)

Emerging Biomarkers

 ARID1A, PTEN, KRAS: These genes are being studied for their potential roles in targeted therapies and personalized treatment approaches. Ovarian BRCA1 BRCA2 KRAS PDGFRA FOXL2 TP53

Summary

- Germline/Hereditary Testing
 - Identifies people with increased risk for cancer
 - Allows for early detection, prevention, and targeted treatments
 - Different genes have different risks and recommendations
- Tumor Testing
 - Determines need for treatment
 - Determines ideal targeted therapy
 - Allows personalized approach to treat patients uniquely

Supplemental

Inherited risk for cancer

(NOT SO) rare...

- BUT have great impact
 - Risk of cancer can be high e.g. 40% ovarian cancer risk with BRCA1 pathogenic variant
 - Multiple primary cancers are common
 - Opportunity for PREVENTION

Identifying Hereditary Cancer is Important

Signs of Hereditary Cancer

- Early age of diagnosis
- Family history of the same or related types of cancer
 - eg. breast and ovarian; colon and endometrial
- Multiple primary cancers, including bilateral breast cancers
- Rare cancers
 - eg. Male breast, fallopian tube, triple-negative breast cancer
- Ancestry
 - eg. Ashkenazi Jewish and BRCA1 and BRCA2

Germline Genetic Testing – How and Why?

- Testing done on healthy tissue usually blood, saliva, cheek swabs
- Patients with prior allogenic BMT or hematologic malignancy may require skin biopsy sample
- For healthy people, as well as those with cancer
- An inherited pathogenic variant is *not* a diagnosis of cancer
- Information can be used for early detection, prevention, and treatment of cancer
- Information can affect relatives

Genes vary in cancer risks

	Breast	Ovarian	Uterine	Other Cancers
BRCA1				Pancreas, prostate
BRCA2				Pancreas, prostate
BRIP1				
PALB2				Pancreas
RAD51C				
RAD51D				
Lynch Syndrome (MLH1, MSH2, MSH6, PMS2)				Colon, small bowel, others

