Skip to main content



Center for Reproductive Sciences

Susan Fisher, PhD

Director, Translational Research in Perinatal Biology and Medicine

Contact Information
Mailing Address:

513 Parnassus Ave, Box 0665
Dolby Regenerative Medicine Bldg, Pod A
Rm 900H
San Francisco, CA 94143

Practice Phone:  
Academic Phone: 415/502-4136
Academic Fax: 415/476-1635
Academic Assistant: 415/502-4136, 415/476-1635
Research/Clinical Interests:

Our group works in three areas. In the first, we are studying the mechanisms used by the trophoblast cells of the human placenta to invade the uterus during normal pregnancy. Human fetal development depends on the embryo's ability to rapidly gain access to the maternal circulation. The cytotrophoblasts that form the fetal portion of the human placenta have solved this problem by transiently exhibiting certain invasive, tumor-like properties. Our studies show that, in normal pregnancy, cytotrophoblast invasion, both in vivo and in vitro, is accompanied by a dramatic switch in the cells' expression of matrix-degrading metalloproteinases and adhesion molecules. Function-perturbation experiments suggest that cytotrophoblasts carefully regulate their invasive potential by simultaneously expressing a number of molecules that either promote or inhibit invasion. Additionally, we found that cytotrophoblasts that replace the endothelial lining of uterine blood vessels also have the amazing ability to mimic the adhesion phenotype of vascular cells. This phenomenon is likely to be a critical component of normal placentation. What controls this highly unusual differentiation process? Since cytotrophoblasts target large-bore arterioles for invasion, we reasoned that oxygen tension could play a role. Recently, we showed that oxygen controls whether cells proliferate or exit the cell cycle and differentiate; Eph/ephrin family members, transmembrane ligands and receptors, pattern invasion in terms of arterial bias. Finally, we use information about molecular aspects of cytotrophoblast function in normal pregnancy to search for defects that are associated with pregnancy complications such as preeclampsia (e.g., dangerously high blood pressure). For example, our work shows that this pregnancy complication is characterized by specific aberrations in trophoblast secretion of vasculogenic/angiogenic substances.

In parallel, our lab has begun studying the earliest stages of human development using human embryonic stem cells as a model system. Our work to date has focused on deriving additional lines using feeders formed from human placental cells. We recently made the surprising discovery that the cells exhibit apical-basal type polarization. Currently we are investigating how this highly specialized phenomenon is related to pluripotency. Our recently funded CIRM comprehensive grant is focused on constructing a fate map of the human embryo.

Finally, we are using mass spectrometry-based approaches for proteome analyses. Three projects are under way. The first is compilation of an initial draft of the salivary proteome of healthy individuals as a first step in using this body fluid for diagnosis of common diseases. The second is an analysis of the primary proteome and protein complexes of the soil organism Desulfovibrio vulgaris. The goal of the third and newest project is to formulate novel methods that enable robust mass spectrometry-based platforms for the discovery of biomarkers in body fluid for the early detection of tumors.

Year Institution & Location Degree Field of Study
1972 Hope College, Holland, MI AB Biology/Chemistry
1973 University of Michigan   Anatomy
1977 University of Kentucky PhD Anatomy
1977-82 University of Kentucky Postdoc Medicine
Achievements & Recognition
Year Major Honors
1990 Department of Stomatology, UCSF, Teacher of the Year
2002 UCSF Graduate Association Outstanding Mentor Award
2004 UCSF School of Dentistry Faculty Research Award
2007 18th Eliot L. Silbar, MD, Memorial Lecturer and Visiting Professor, Northwestern University, Chicago, IL
Selected Publications

Genbacev O, Krtolica A, Zdravkovic T, Brunette E, Powell S, Nath A, Caceres E, McMaster M, McDonagh S, Li Y, Mandalam R, Lebkowski J, Fisher SJ. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril. 2005;83:1517-29.

Red-Horse K, Kapidzic M, Zhou Y, Feng KT, Singh H, Fisher SJ. EPHB4 regulates chemokine-evoked trophoblast responses: a mechanism for incorporating the human placenta into the maternal circulation. Development. 2005;132:4097-106.

Red-Horse K, Rivera J, Schanz A, Zhou Y, Winn V, Kapidzic M, Maltepe E, Okazaki K, Kochman R, Vo KC, Giudice L, Erlebacher A, McCune JM, Stoddart CA, Fisher SJ. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest. 2006;116:2643-52.

Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, Feng KT, Bernlohr DA, McDonagh S, Pereira L, Sali A, Fisher SJ. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology. 2007;148:1059-79.